翻訳と辞書 |
Weighted Voronoi diagram : ウィキペディア英語版 | Weighted Voronoi diagram In mathematics, a weighted Voronoi diagram in ''n'' dimensions is a Voronoi diagram for which the Voronoi cells are defined in terms of a distance defined by some common metrics modified by weights assigned to generator points. The multiplicatively weighted Voronoi diagram is defined when the distance between points is multiplied by positive weights.〔"Dictionary of distances", by Elena Deza and Michel Deza (pp. 255, 256 )〕 In the plane under the ordinary Euclidean distance, the multiplicatively weighted Voronoi diagram is also called circular Dirichlet tessellation〔Peter F. Ash1 and Ethan D. Bolker, (Dirichlet tessellations http://www.springerlink.com/content/j334537p07370405/ ), ''Geometriae Dedicata'', 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Weighted Voronoi diagram」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|